Научная статья УДК 693.8 EDN LABWUL https://doi.org/10.22450/978-5-9642-0635-4-156-161

Обследование ограждающих конструкций здания промышленного объекта в условиях Дальнего Востока

Елена Викторовна Окладникова¹, кандидат технических наук, доцент **Андрей Васильевич Ляпустин²,** студент магистратуры ^{1, 2} Дальневосточный государственный аграрный университет Амурская область, Благовещенск, Россия ¹ okladnikova ev@mail.ru, ² odky@yandex.ru

Анномация. В статье рассмотрены результаты выполненного тепловизионного обследования трехслойных ограждающих конструкций здания повышенной этажности, проведен анализ в различных узлах примыканий. Исследовано влияние теплотехнических характеристик ограждающих конструкций на уровень энергоэффективности объекта.

Ключевые слова: тепловизионное обследование, энергоэффективность здания, трехслойные ограждающие конструкции

Для цитирования: Окладникова Е. В., Ляпустин А. В. Обследование ограждающих конструкций здания промышленного объекта в условиях Дальнего Востока // Агропромышленный комплекс: проблемы и перспективы развития: материалы междунар. науч.-практ. конф. (Благовещенск, 18–19 апреля 2024 г.). Благовещенск: Дальневосточный ГАУ, 2024. С. 156–161.

Original article

Inspection of the enclosing structures of an industrial facility building in the conditions of the Far East

Elena V. Okladnikova¹, Candidate of Technical Sciences, Associate Professor Andrey V. Lyapustin², Master's Degree Student

1, 2 Far Eastern State Agrarian University, Amur region, Blagoveshchensk, Russia

^{1,2} Far Eastern State Agrarian University, Amur region, Blagoveshchensk, Russia okladnikova_ev@mail.ru, ² odkv@yandex.ru

Abstract. The article considers the results of a thermal imaging survey of three-layer enclosing structures of a high-rise building, an analysis is carried out at various junctions. The influence of thermal engineering characteristics of enclosing structures on the energy efficiency level of the facility is investigated.

Keywords: thermal imaging inspection, energy efficiency of the building,

three-layer enclosing structures

For citation: Okladnikova E. V., Lyapustin A. V. Inspection of the enclosing structures of an industrial facility building in the conditions of the Far East. Proceedings from Agro-industrial complex: problems and prospects of development: Mezhdunarodnaya nauchno-prakticheskaya konferentsiya (Blagoveshchensk, 18–19 aprelya 2024 g.) (PP. 156–161), Blagoveshchensk, Dal'nevostochnyj gosudarstvennyj agrarnyj universitet, 2024 (in Russ.).

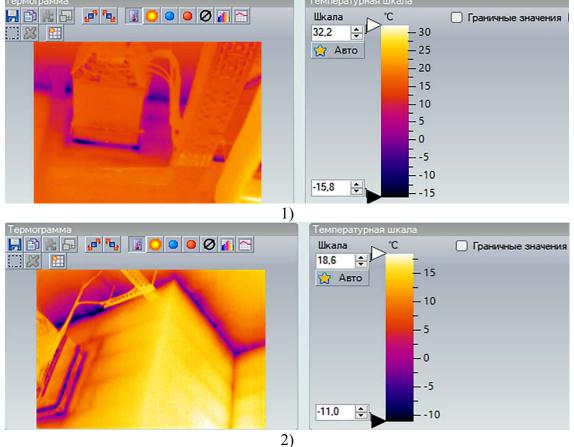
Целью работы явилось исследование влияния теплотехнических характеристик ограждающих конструкций на уровень энергоэффективности объекта.

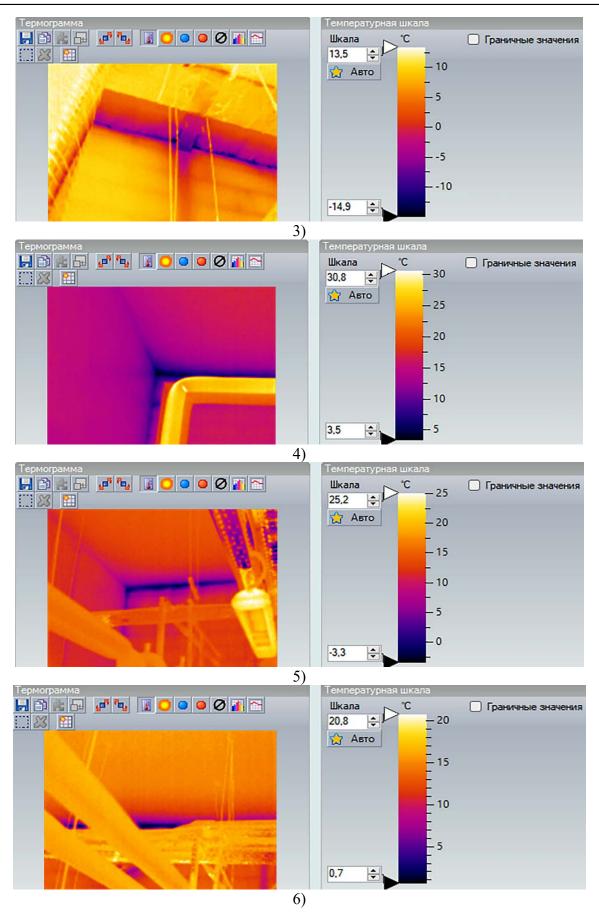
Объектом исследования выступают производственные здания повышенной этажности. Для проведения исследований выбрано здание сборочно-испытательной части монтажно-испытательного корпуса, выполненного из стального рамно-связевого каркаса со стенами из сэндвич-панелей. Промышленное здание расположено в ЗАТО Циолковский. Высота здания 33 метра.

Для здания повышенной этажности, находящегося в эксплуатации, выполнено тепловизионное обследование трехслойных ограждающих конструкций с целью исследования влияния теплотехнических характеристик на уровень энергоэффективности объекта [1].

В работе определены основные параметры обследования (табл. 1). Произведен анализ выполненных исследований.

Таблица 1 – Основные параметры обследования


Параметры	Характеристики
1. Наименование и адрес объекта, нормативные документы	Россия, Амурская область, Свободненский район, Циолковский; ГОСТ 54860–2011; СП50.13330.2021
2. Тип термографического обследования	обзорное
3. Элементы конструкций, подлежащие обследованию	стеновые сэндвич-панели
4. Конструктивный тип объекта	стальной рамно-связевой каркас со стенами из стеновых сэндвич-панелей
5. Тип материалов, расчетное сопротивление теплопередаче	сэндвич панели Н-150
6. Ориентация здания по сторонам света	основной фасад обращен на северо-запад
7. Спецификация измерительного оборудования	тепловизор Testo 880-1, свидетельство о поверке № 212578/442


Строительство и природообустройство Construction and environmental management

Продолжение таблицы 1

Параметры	Характеристики
8. Дата и время проведения обследования	06.11.2023; с 9 до 11 часов
9. Температура наружного воздуха	минус 11 °C
10. Солнечное воздействие	очень пасмурно
11. Атмосферные осадки и направление	осадков нет;
ветра во время обследования	ветер восточный, юго-восточный 1–1,2 м/с
12. Перепады внутренних и наружных температур	в пределах 1 °C
13. Перепад давления воздуха с наветренной и подветренной сторон	не требуется
14. Другие важные погодные и иные факторы	нет
15. Результаты дополнительных измерений	не проводились
16. Информация о проведенной обработке	с помощью официальной программы
термограмм	Testo IRSoft v4.7 SP1
17. Данные об участках, температура которых отличается от действительной	нет

Все полученные измерения сведены в ведомость измерений теплопроводности и приведены на рисунке 1.

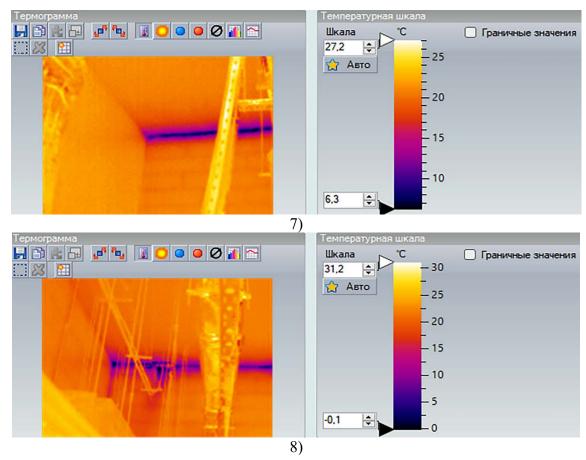


Рисунок 1 – Данные измерений теплопроводности

По результатам обследования на термограммах указаны несущественные локальные зоны инфильтраций между стыками стеновых панелей в углах здания, в местах примыкания кровли и стен здания и в местах прохода инженерных сетей через стены и кровлю здания.

На основании результатов тепловизионного обследования подтверждается энергоэффективность здания с ограждающими конструкциями из трехслойных сэндвич-панелей с параметрами по толщине -0.15 м, по ширине -1.1 м и длиной 8 метров при эксплуатации крупного промышленного объекта в условиях резко-континентального климата на Дальнем Востоке.

В проектах с применением сэндвич-панелей обеспечивается максимальное снижение материалоемкости, энергопотребления, трудоемкости и стоимости строительства при заданной рентабельности без привлечения дополнительных капиталовложений [2].

Список источников

- 1. ГОСТ Р 54852–2021. Здания и сооружения. Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций // Техэксперт. URL: https://docs.cntd.ru/document/1200089410 (дата обращения: 23.01.2024).
- 2. Окладникова Е. В., Ляпустин А. В. Применение трехслойных ограждающих конструкций для повышения энергоэффективности зданий и сооружений // Агропромышленный комплекс: проблемы и перспективы развития: материалы всерос. науч.-практ. конф. Благовещенск: Дальневосточный государственный аграрный университет, 2023. С. 387–393.

References

- 1. Buildings and structures. Method of thermal imaging quality control of thermal insulation of enclosing structures. (2021) *GOST R 54852–2021 docs.cntd.ru* Retrieved from https://docs.cntd.ru/document/1200089410 (Accessed 23 January 2024) (in Russ.).
- 2. Okladnikova E. V., Lyapustin A. V. The use of three-layer enclosing structures to improve the energy efficiency of buildings and structures. Proceedings from Agro-industrial complex: problems and prospects of development: *Vserossiiskaya nauchno-prakticheskaya konferentsiya* (PP. 387–393), Blagoveshchensk, Dal'nevostochnyj gosudarstvennyj agrarnyj universitet, 2023 (in Russ.).
- © Окладникова Е. В., Ляпустин А. В., 2024

Статья поступила в редакцию 26.03.2024; одобрена после рецензирования 17.04.2024; принята к публикации 07.06.2024.

The article was submitted 26.03.2024; approved after reviewing 17.04.2024; accepted for publication 07.06.2024.